Journal of Chromatography, 346 (1985) 461–462 Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROM. 17 953

Note

Shelf-life of unused high-performance liquid chromatographic columns

N. G. S. GOPAL* and G. SHARMA ISOMED, Bhabha Atomic Research Centre, Bombay 400 085 (India) (Received June 7th, 1985)

Manufacturers of prepacked high-performance liquid chromatographic (HPLC) columns claim that columns are prepared on a large scale with stringent controls that ensure uniformity and reproducible selectivity. They emphasize that all columns have a finite lifetime before their efficiency and selectivity diminish to unacceptable levels. When one considers lifetime, two aspects have to be considered: first the shlef-life of a column that is stored for later use and second the lifetime of a column in use.

Precautions are taken to protect a column during its use e.g., the mobile phase must have a pH range compatible with the column and the mobile phase and sample solution must be free from particulate matter.

Overseas users often need to order more than one column at a time for economy and to safeguard the continuity of the work, as there is considerable batch-tobatch variation, as can be seen from the characteristics of two silica (10 μ m) columns from one manufacturer given in Table I.

In order to establish the effect of column storage, we examined five different types of columns (A–E), all of 25 cm \times 4.6 mm I.D. The stationary phase, mobile phase and flow-rate (according to the manufacturer's certificate), the non-retained solute employed for the determination of t_0 and the value of t_0 were as follows: (A) silica, 10 μ m; heptane; 0.67 ml/min; hexane; 4.28 min; (B) octadecylsilane, 10 μ m; methanol-water (7:3); 1 ml/min; KNO₃; 2.52 min; (C) strong anion exchanger, 10 μ m; 0.05 *M* phosphate, pH 3.35; 0.67 ml/min; 0.01 *M* KH₂PO₄, 4.67 min; (D) strong cation exchanger, 10 μ m; 0.02 *M* phosphate, pH 3.5; 0.67 ml/min; KNO₃; 3.78 min;

TABLE I

CHARACTERISTICS OF TWO COLUMNS SUPPLIED BY ONE MANUFACTURER

 t_0 = Retention time of unretained sample; $t_{\rm R}$ = retention time; N = plates per column.

Column	t _o (min)	Carbon tetrachloride		Benzene		Naphthalene	
		t _R (min)	N	t _R (min)	N	t _R (min)	N
1	4.25	4.68	6160	6.00	7520	7.32	7300
2	4.69	5.72	10 670	7.65	10 890	10.20	10 840

TABLE II

COMPARISON OF COLUMN CHARACTERISTICS REPORTED IN THE CERTIFICATE AND THOSE DE-TERMINED IN OUR LABORATORY

Column	Date of testing	Test mixture*	Column characteristics				
			t _R (min)	N	k'	R	
A	29.8.79	CCl₄	4.68 (4.97)	6160 (3109)	0.10 (0.14)	5.11 (3.76)	
	(11.1.85)	Benzene	6.00 (6.32)	7520 (4579)	0.41 (0.45)	4.20 (4.93)	
		Naphthalene	7.32 (5.30)	7300 (5646)	0.72 (0.91)		
В	11.2.80	Benzene	4.24 (4.00)	5990 (1883)	0.56 (0.59)	5.45 (2.55)	
	(20.12.84)	Naphthalene	5.83 (5.00)	5110 (2443)	1.14 (0.97)		
		Biphenyl	7.17 (5.80)	4710 (2430)	1.64 (1.25)	3.41 (1.67)	
C	4.6.80	СМР	5.82 (5.78)	3730 (2738)	0.39 (0.24)	2.96 (2.48)	
	(14.6.84)	AMP	7.19 (6.95)	3170 (2898)	0.72 (0.48)	3.28 (2.14)	
		UMP	8.97 (8.06)	4410 (3064)	1.14 (0.73)	6.68 (5.47)	
		GMP	13.68 (12.44)	4410 (3660)	2.27 (1.66)		
D	1.2.79	Uracil	5.84 (5.29)	6800 (1843)	0.36 (0.40)	4.35 (4.10)	
	(12.6.84)	Guanine	7.60 (8.12)	4630 (2283)	0.77 (1.15)	3.52 (5.20)	
	. ,	Cytosine	9.54 (13.22)	4640 (2878)	1.22 (2.50)		
Ε	15.7.82 (19.12.84)	Benzyl alcohol	- (3.80)	13 799 (2885)	1.02 (0.64)	-	

The dates and figures given in parentheses pertain to our work.

* CMP = cytidine-, AMP = adenosine-, UMP = uridine- and GMP = guanosine-5'-monophosphate (disodium salt).

and (E) trimethylsilane, 6 μ m; methanol-water (1:1); 1.3 ml/min; KNO₃; 2.32 min.

Using test mixtures similar to those mentioned in the manufacturer's certificate, the following column characteristics were determined¹: retention time (t_R) ; number of theoretical plates (N) per unit column length; capacity factor (k'); and resolution (R). The results in Table II show that stored, unused columns (silica, reversedphase, ion-exchange) undergo considerable decrease in efficiency and selectivity.

Manufacturers of HPLC columns should, therefore, advise customers about the shelflife of their columns and supply them only from stocks of recent manufacture.

REFERENCE

1 N. G. S. Gopal awnd G. Sharma, J. Liq. Chromatogr., 5 (1982) 869-879.